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 Electronic health records (EHRs) are systematic DIGHAL HEALTH
collections of longitudinal patient health information, --
iIncluding demographics, diagnosis, medications, etc.
Precise analysis of EHRs help us to understand
human diseases and to design better healthcare
systems]1].

« However, EHR data are heterogeneous, sparse,
and noisy. Deriving robust and reliable methods to

Results

1. EHR Held-out Reconstruction
e compared our model with other topic-based state-of-the-art models:
MixEHR[2], ETM[3], GETMI4].
* fed only half records of each patient to let models predict the remained half.
e our model out-performed them on both reconstruction likelihood (negative
log-likelinood is the lower the better) and topic quality (considering topic
coherence and divergence, the higher the better).

Transforming medicine

analyze EHRSs Is challenging. QG;A ' withartificial intelligence
Model Negative Log-likelihood | Topic Quality
MixEHR 203.97 0.0673
- ] ] Y ETM 198.26 0.0704
Contributions GETM 184.32 0.1843
GAT-ETM 172.69 0.1920
To deal with the above challenges, we:
* Incorporated existing medical knowledge and built a multi-modal . _
knowledge graph of relations within and between diseases and drugs. 2. Phenotype Classification
* Dbuilt GAT-ETM, a graph-informed end-to-end multi-modal topic model, e used learned patient topic mixture 6 as patient embeddings, trained a logistic
letting the existing medical knowledge guide our model learn informative regression model to classify diseases based on the 100-dimensional
and interpretable topics. embeddings, and evaluated their ability of classification.
 applied our model on a mammoth EHR dataset which includes e conduct this classification task on 12 diseases and compared average Area
1,200,000 patients with up to 20 years of follow-up, and thus got Under the Receiver Operating Characteristic Curve (AUROC).
100 meaningful disease and drug topics. e the performance of our model has a significant improvement over others on
« evaluated GAT-ETM on three tasks: held-out reconstruction, phenotype all 12 diseases (following bar plot on the left).
classification, drug recommendation, showed that compared to existing
models, our model gives the most informative patient embeddings. —
adhd m GETM
ami m— ETM Model prec@5 | recall@5 | F1-score@5
/ asthma - ETM 0.1823 | 0.0833 | 0.1075
autism GETM 0.2378 0.1101 0.1418
MethOdS " GAT-ETM | 0.2600 | 0.1225 | 0.1569
» Topic model: s - | |
+ Patients' topic mixture 0 is assumed to D o B pilepsy oo T raentle of requencies o
fits to a logistic-normal distribution: mixture h i ETM 0.0039 | 0.0188 | 0.0479 | 0.3847 | 0.3058
(5,) GATETM | 0.0345 | 00841 | 01230 04583 | 03815
EXp p code topic | i . . . . .
6 d N O, I ) e —_— embeddin em ep in schizophrenia
g ( ) g Zk’ eXp(épk') N N - 0.5 0.6 0.7 0.8 0.9 1.0
» Topic-code distribution 3 IS computed by Q ° | | ~ AuRoC | |
dot product (considering both cosine Np
similarity and frequency) between topic 3. Drug Recommendation
embeddings and medical code embeddings: obsewed G o fed only patients' disease codes to the models, let them impute drug codes.
; exp(p® o) code e compared precision, recall, F1- score based on top-5 prediction given by the
](f) = softmax(p? a.) = (t)T' geiode models; also compared imputation recall of drugs of different frequencies.
2y €XP(Pu. Or) * ours has an apparent improvement (above tables on the right).
* Jopic embeddings a Is a matrix as learnable model parameters.
* Medical code embedding 3 is obtained from a graph attention network (GAT) that 4. Case Study

extract semantic feature from the constructed medical knowledge graph.

_ _ | _ Further investigation in several patients of the top worst imputation results
e finally, each EHR medical code (type t € {disease, drug}) is sampled from:

showed that the drugs imputed by our model are mostly still close to and

, "
Cfar)b N Cat(ﬁ(t) 0,). have similar usage as the ground truth drugs.
We infer true distribution of patient topic mixture N(up, o0p) by a two-layer feed 5. Learned Multi-modal Topics

forward neural network following a fusion layer that integrates multi-modal data.
Evidence lower bound (ELBO) maximizes the likelihood while minimize the
Kullback—Leibler divergence between the inferred distribution and the logistic-
normal assumption. We maximize ELBO to train model parameters.

Following is a heatmap visualization of top 5 codes of five selected
disease-drug topics: pneumonia, cystic fibrosis, coronary heart diseases,
thyroiditis, connective tissue disease.
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